Additional Answer Options: 3.2.2

2023 - May/June - Paper 1 - Question 3

3.1

 

Motion under the influence of gravity / weight / gravitational force only.   

OR

Motion in which the only force acting is the gravitational force.   

Teacher tip

2 marks

(1 x 2 marks)

3.2.1

 

Option 1:

Upwards as positive:

\Delta \mathrm{y}=\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^2 (1)  

-15,2=(0)+1 / 2(-9.8) \Delta t^2 (2)  

\Delta \mathrm{t}=1,76 \mathrm{~s} (3)  

OR

Downwards as positive:

\Delta y=v_i \Delta t+1 / 2 a \Delta t^2 (1)  

15,2=(0)+1 / 2(9,8) \Delta t^2 (2)  

\Delta \mathrm{t}=1,76 \mathrm{~s} (3)  

There are more ways to answer this question. To view other options, click here

Teacher tip

3 marks

(3 x 1 mark)

Marking criteria:

  • (1) Formula to calculate Δt.  
  • (2) Correct substitution to calculate Δt.  
  • (3) Final answer: 1,76 s.  

3.2.2

 

Option 1:

Upwards as positive:

\Delta \mathrm{y}=\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^2 (1)  

-3,2=(0)+1 / 2(-9,8)(\Delta t)^2 (2)  

\Delta t=0,81 \mathrm{~s} 

\Delta t(B)=1,76-0,81 (3)  

\Delta \mathrm{t}(\mathrm{B})=0,95 \mathrm{~s} 

\Delta \mathrm{y}=\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^2 

(0)=v_i(0.95)+1 / 2(-9.8)(0.95)^2 (4)  

\mathrm{v}_{\mathrm{i}}=4,66 \mathrm{~m} \cdot \mathrm{s}^{-1} (5)  

OR

Downwards as positive:

\Delta \mathrm{y}=\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^2 (1)  

3,2=(0)+1 / 2(9,8)(\Delta t)^2 (2)  

\Delta t=0.81 \mathrm{~s} 

\Delta \mathrm{t}(\mathrm{B})=1.76-{0} .81 (3)  

\Delta \mathrm{t}(\mathrm{B})=0,95 \mathrm{~s} 

\Delta \mathrm{y}=\mathrm{v}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^2 

0=-\mathrm{V}_{\mathrm{i}}(0,95)+1 / 2(9,8)(0,95)^2 (4)  

v_i=4,66 \mathrm{~m} \cdot \mathrm{s}^{-1} (5)  

There are more ways to answer this question. To view other options, click here

Teacher tip

5 marks

(5 x 1 mark)

Marking criteria:

  • (1) Correct substitution to calculate Δt for ball A.  
  • (2) Subtraction 1,76 0,81.  
  • (3) Correct formula to calculate vi for ball B.  
  • (4) Correct substitution to calculate vi for ball B.  
  • (5) Final answer: 4,66 m·s-1 (4,66 to 4,7).  

 

 

3.3

 

Upwards as positive:

 

OR

Downwards as positive:

 

Teacher tip

5 marks

(5 x 1 mark)

Marking criteria:

  • Initial position of ball A = 15,2 m and B = 0 m.  
  • Starting times for A = 0 s and B = 0,81 s.  
  • Both balls strike the ground at t = 1,76 s.  
  • Shape of graph for ball A.  
  • Shape of graph for ball B.  

Or

Option 2

Upwards as positive:

\Delta\mathrm{y}=\mathrm{v}_{\mathrm{i}}\Delta\mathrm{t}+1/2\mathrm{a}\Delta\mathrm{t}^2 (1)

-3,2=(0)+1/2(-9,8)(\Delta t)^2 (2)

\Delta\mathrm{t}=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (3)

\Delta t(B)=0,95\mathrm{~s}

\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a}\Delta\mathrm{t}

-v_{i}=v_{i}+(-9,8)(0,95) (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Downwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2 (1)

3,2=(0)+1/2(9,8)(\Delta t)^2 (2)

\Delta\mathrm{t}=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (3)

\Delta\mathrm{t}(\mathrm{B})=0,95\mathrm{~s}

v_{f}=v_{i}+a\Delta t

\mathrm{v}_{\mathrm{i}}=-\mathrm{v}_{\mathrm{i}}+(9,8)(0,95) (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Part 1

Option 1

Upwards as positive:

\mathrm{v}_{\mathrm{f}}^2=\mathrm{v}_{\mathrm{i}}^2+2\mathrm{a}\Delta\mathrm{y}

v_{f}^2=(0)^2+(2)(-9,8)(-3,2)

v_{f}=-7,92\mathrm{~m}\cdot\mathrm{s}^{-1}


Or

Downwards as positive:

v_{f}^2=v_{i}^2+2a\Delta y

v_{f}^2=(0)^2+(2)(9,8)(3,2)

\mathrm{v}_{\mathrm{f}}=7,92\mathrm{~m}\cdot\mathrm{s}^{-1}


Or

Option 2

\left(\mathrm{E}_{\text{mech }}\right)_{\mathrm{top}}=\left(\mathrm{E}_{\mathrm{mech}}\right)_{bot}

\left(\mathrm{E}_{\mathrm{p}}+\mathrm{E}_{\mathrm{k}}\right)_{\mathrm{top}}=\left(\mathrm{E}_{\mathrm{p}}+\mathrm{E}_{\mathrm{k}}\right)_{\text{bot }}

\left(mgh+1/2mv_1^2\right)_{\text{too }}=\left(mgh+1/2mv_{f}^2\right)_{\text{bot }}

(9,8)(3,2)+0=0+(1/2)\left(v_{f}\right)^2


Or

Option 3

\mathrm{v}_{\mathrm{f}}=7,92\mathrm{~m}\cdot\mathrm{s}^{-1}

\mathrm{W}_{\mathrm{nc}}=\Delta\mathrm{K}+\Delta\mathrm{U}

W_{nc}=\Delta K+mg\left(h_{f}-h_{i}\right)

0=1/2mv_{f}^2-1/2mv_{i}^2+mgh_{f}-mgh_{i}

0=1/2\left(v_{f}^2-0\right)+(9,8)(3,2)

v_{f}=7,92\mathrm{~m}\cdot\mathrm{s}^{-1}


Or

Option 4

\mathrm{W}_{\mathrm{net}}=\Delta\mathrm{E}_{\mathrm{k}}

w\Delta y\cos\theta=1/2mv_{f}^2-1/2mv_{i}^2

(9,8)(3,2)\cos0^{\circ}=1/2v_{f}^2-0

\mathrm{v}_{\mathrm{f}}=7.92\mathrm{~m}\cdot\mathrm{s}^{-1}


Part 2

Option 1

Upwards as positive:

v_{f}=v_{j}+a\Delta t

-7,92=(0)+(-9,8)\Delta t (1)

\Delta t=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (2)

\Delta\mathrm{t}(\mathrm{B})=0,95\mathrm{~s}


Or

Downwards as positive:

\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a}\Delta\mathrm{t}

7,92=(0)+(9,8)\Delta t (1)

\Delta\mathrm{t}=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (2)

\Delta\mathrm{t}(\mathrm{B})=0,95\mathrm{~s}


Or

Option 2

Upwards as positive:

\Delta\mathrm{y}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right)\Delta\mathrm{t}

-3,2=\left(\frac{0-7,92}{2}\right)\Delta t (1)

\Delta\mathrm{t}=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (2)

\Delta t(B)=0,95\mathrm{~s}


Or

Downwards as positive:

\Delta\mathrm{y}=\left(\frac{\mathrm{v}_{\mathrm{i}}+\mathrm{v}_{\mathrm{f}}}{2}\right)\Delta\mathrm{t}

3,2=\left(\frac{0+7,92}{2}\right)\Delta t (1)

\Delta\mathrm{t}=0,81\mathrm{~s}

\Delta\mathrm{t}(\mathrm{B})=1,76-0,81 (2)

\Delta t(B)=0,95\mathrm{~s}


Or

Option 3

Upwards as positive:

\Delta\mathrm{y}=\mathrm{v}_{\mathrm{i}}\Delta\mathrm{t}+1/2\mathrm{a}\Delta\mathrm{t}^2

-12=-7,92\Delta t+1/2(-9,8)\Delta t^2 (1 + 2)

\Delta\mathrm{t}=0,95\mathrm{~s}


Or

Downwards as positive:

\Delta y=v_{i}\Delta t+1/2a\Delta t^2

12=7,92\Delta t+1/2(9,8)\Delta t^2 (1 + 2)

\Delta\mathrm{t}=0,95\mathrm{~s}


Part 3

Option 1

Upwards as positive:

\left(\Delta\mathrm{t}_{\mathrm{up}}\text{ and down }=0,95\mathrm{~s}\right)

v_{f}=v_{i}+a\Delta t (3)

-v_{i}=v_{i}+(-9,8)(0,95) (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Downwards as positive:

v_{f}=v_{i}+a\Delta t (3)

v_{i}=v_{i}+(9,8)(0,95) (4)

=-4,66

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Option 2

Upwards as positive:

\left(\Delta\mathrm{t}_{\mathrm{up}}=0,475\mathrm{~s}\right)

v_{f}=v_{i}+a\Delta t (3)

0=v_{i}+(-9,8)(0,475) (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Downwards as positive:

\left(\Delta\mathrm{t}_{\mathrm{up}}=0,475\mathrm{~s}\right)

\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a}\Delta\mathrm{t} (3)

0=v_{i}+(9,8)(0,475) (4)

=-4,66

v_{i}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Option 3

Upwards as positive:

\Delta y=v_{j}\Delta t+1/2a\Delta t^2 (3)

0=v_{i}(0,95)+1/2(-9,8)(0,95)^2 (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Downwards as positive:

\Delta\mathrm{y}=\mathrm{v}_{\mathrm{i}}\Delta\mathrm{t}+1/2\mathrm{a}\Delta\mathrm{t}^2 (3)

0=-v_{i}(0,95)+1/2(9,8)(0,95)^2 (4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Option 7

Upwards as positive:

\left.\begin{array}{l}F_{\text{net }}\Delta_{t}=\Delta p\\ =m\left(v_{f}-v_{i}\right)\end{array}\right\}Anyone (1)

(-9,8)(0,95)=-2v_{i} (2 + 3 + 4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)


Or

Downwards as positive:

\left.\begin{array}{l}F_{\text{net }}\Delta_{t}=\Delta p\\ =m\left(v_{f}-v_{i}\right)\end{array}\right\}Anyone (1)

(9.8)(0.95)=2v_{i} (2 + 3 + 4)

\mathrm{v}_{\mathrm{i}}=4,66\mathrm{~m}\cdot\mathrm{s}^{-1} (5)

Related subjects & topics
Explore similar posts in our community